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Role of divergence of classical trajectories in quantum chaos
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We study logarithmic-int effects in the statistical description of quantum chaos. We found analytical
expressions for the deviations from the universality in the weak localization correction and in the level
statistics and showed that the characteristic scale for these deviations is the Ehrenfgst-timé Ini|, where
\ is the Lyapunov exponent of the classical motip$1063-651X97)51101-9

PACS numbeps): 73.20.Fz, 03.65.Sq, 05.46b

It is accepted in the literature to call the consideration ofcoherent amplitudes. Such coherent amplitudes are contrib-
guantum phenomena in classically chaotic systems “quandted by the segments of the same classical trajectories and
tum chaos” [1]. For a de Broglie wavelengthy much the resulting products are expressed in terms of the probabili-
smaller than the characteristic size of the system, quanturies of finding such segments. The latter probabilities are
phenomena still bear essential features of the classical chéound by solving the classical equation of motion. Most us-
otic motion. Examples of such systems studied both theoretiaple quantities are the probability where the initiand final
cally and experimentally are ballistic cavities or antidot ar-f states coincide;=n, ,r¢=r; [we will denote this probabil-
rays[2]. The quantities usually considered include differentity a5, (t;n;,r;)] or are related to each other by time in-
correlators of quantum spectra of the systéenel statistics | grsion ne=—n;,r;=r; [we will denote this probability as

as well as of different response functions, e.g., fluctuations Ob,(t;ni ,r.)]. Herer andn are the coordinate of the particle
the conductancémesoscopigsor the quantum COITECtion 10 a4 the direction of its momentum respectively. The first

the ave.raged transport coefﬁue@aeak Iocal|zat|'om. guantity is relevant for the leading approximation for the two
In principle, all the aforementioned characteristics can be

found by solving the one-particle Schiinger equation for point correlator of the de.nS|_ty.of state®OS) 7,859,
the given system. However, the Schiger equation for whereas the second quantity is important for the weak local-

such systems cannot be solved analytically. Substantiaf&ton corre(_:tlon. to the conductivi§6] and for the higher
progress can be achieved in the statistical approach to quafder approximations for the correlator of DOS; see below.
tum chaos. In such an approach one gives up attempts to find " What follows we will consider only ergodic systems.
a contribution of a single quantum state but instead studie$niS means that after some time the particle visits all the
correlators averaged over large number of quantum stateBhase space allowed by the energy conservation, i.e., the
The averaging for a given system can be performed eitheflassical probabilitiesD. averaged over the conditions
over wide range of energies or over the applied magneti®;.r; cease to depend on time and take the value &f 1/
field. whereS is the volume of the system. It is very crucial that
In the present Rapid Communication we apply the superthe equilibration time forD_ is parametrically larger than
symmetry descriptiof3—5] to investigate how the universal- that for the probabilityD., .
ity is established in the statistical properties of the system at The characteristic relaxation time for the probabilidy,
low frequencies. We will show that the time it takes to es-is of the order of the flying time of a particle across the
tablish the universality iste=\"2|In%|, where \ is the = systemry=L/vg for the ballistic regime or the Thouless
Lyapunov exponent of the classical motion. We will expresstime r=L2?/D for the diffusive regime I( is size of the
deviations from the universality in the level statistics and insystem,D is the diffusion coefficient, andg is the Fermi
the weak localization corrections in terms of the single renorvelocity).
malization function6]. Finally, we emphasize the necessity = On the other hand, in the strictly classical limit probability
of the finite regulator in the Perron-Frobenius operator into haven;=—n; ,ry=r; vanishes no matter how large trav-
obtaining physical results for the quantum corrections. eling timet is. This is due to the fact that the final state can
Let us first discuss the physical origin of the logarithmic- be reached by moving along a classical trajectory which co-
in-A corrections. In the semiclassical approximation, eachncides with the initial one. This means that a particle must
classical trajectory corresponds to the quantum mechanicéle reflected exactly backwards from an obstacle. For the cha-
amplitude. Quantum phenomena in the system originatetic system, the measure for such a process is zero and that is
from the interference of the different amplitudes. After thewhy D_(t;n;,r;)=0. The only reason for this probability not
averaging, most of the interference contributions vanishto vanish is that the initial and final conditions cannot be
Those that survive are the products that contain the pairs afpecified with accuracy better than is allowed by the uncer-
tainty principle. Due to this principle, the difference
[n¢ X ni| = 8¢, cannot be smaller than the diffraction spread-
*Present address: NEC Research Institute Inc., Princeton, Nihg 6¢¢= \Ag/a, with a>\ being the characteristic spatial
08540. scale of the static potential the particle moves in. In order to
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find the probability for such clos€but not coinciding  the averaged quantities and to understand how the underly-
rs,r;, one has to take into account the fact that the motionsng classical dynamics shows up in various quantum correc-
of the particle at the initial and final stages are correlatedtions.

This is because the trajectory along which the particle moves Partition function Z in the supersymmetry approach is
on the final stage[r(t—t;),—n(t—t;)], almost coincides given by the functional integrdb]

with the trajectory the particle moved along at the initial

stage,[r(ty),n(t;)]. This problem is equivalent to the con- _ _mv

sideration of the divergence of two classical trajectories Z{J}_j DQ(l)ex;{ 2 Jdl STHL+Ly)|, )
(*1” and “2” ) which start from the same poimt with a ) _ _ i

small difference in the directions of their momenta With LagrangiansC, £, being defined as

[n,(0)Xny(0)|= 8¢, (it can be seen by the time inversion ot 1492

on the final segmehtIn the chaotic system the difference =2 AQ+TIALT+ | —=| , Q=T AT
Sh(t)=|ny(t)xny(t)] grows exponentially with time 2 47\ ddy

Sp(t)=Spe where is the Lyapunov exponent of the 1
classical chaotic motion. Therefore, we have also for the . N

given trajectoryd¢(t;) =|n(t—ty) X n(ty)|= ¢oeMt. In or- EJ_IQ(1)[JlkA+(J2(l)A++J2(1)A) 2 ®

der to close the trajectory at some timg<t/2, angle ) i _
S4(t*) should become of the order of unity and thus Where v is the density of states per unit area. We used the

t=(2\)In(1/6¢,). Taking into accountdgy=+\r/a we Shorthand notation %(ny,ry),1=(—ny,ry),dl=dn;dry/

conclude that the time it takes to establish the equilibrium?™> coordinater and the direction of the momentum

value of functionD_ is the Ehrenfest time n=(cosp,sing) characterize the position of the particle on
the energy shellwe will restrict ourselves to two dimen-
sional systems Liouvillean operatoi. describes the classi-

' @) cal evolution on the energy shell and defined by the Poisson

) ) bracketl-={-,H}, where is the Hamiltonian function.
andD_ vanishes at smaller tim&_=6(t—tg). The last term in the Lagrangiad is the regularizer, the
~ The above discussion leads us to the following expresphysical significance of which will be discussed later. The
sions for the Fourier transform of the classical probabilitiespperation of supertrace is defined in RES]. We will con-
D.. for the frequencieso smaller than inverse time of the sider only systems with the unbroken time reversal symme-

1
tE:XIn

a

Ag

travel of the particle across the system: try (orthogonal ensemble
In Eq. (5), T is an 8x8 supermatrix defined in a linear
1 1 I'(w) ; .
D,(w)= sToT D_(w)= S Tio" (2)  superspacp®g®d which we represent as the direct product

of three linear spaceq andd are the spaces of retarded-
advanced and time revergabmplex conjugabe2 X 2 matri-

wherew ™’ = w+i0. The denominators in Eq&) reflect the . : .
- : .__ces respectively, and is the superspace of fermion-boson
ergodicity of the system at large time and the renormaliza:

: . ) : 2X 2 supermatrices. All the relevant matrices can be conve-
tion functionI" (w) describes the delay @ _(t) with respect . . . .
to D, (t) by the Ehrenfest time, niently expressed in terms of the Pauli matrices

77,75 = (1 xi7)/2, acting in spacesk=p,g,d. Matrices

_ 02\ te A=721%1% A.="®1%1% and k=1PeI®1¢

F(w)=exp(|th— —)\2—) ()  break the symmetry in advanced-retarded and in fermion-
boson spaces respectively. Matfixis the subject to con-

The second factor in Eq3) characterizes the fluctuations of Straints  T'KT=K and T'(1)=CT(1)C", where

the Lyapunov exponent and the parametgiis of the order 2K=[(1+%)®1%+(1- D)@ J]©1? and the matrix of

of \. More details about the derivation of functibhcan be charge  conjugate C is given by C=1P
found in Ref.[6]. Appearance of the new time scaleis the  ®(19% 7% — 2 79).

qualitative difference between quantum chaoskg and Partition function(4) allows one to find different quantum
guantum disordea=<X\ regimes.(In the systems where the mechanical correlators averaged over a wide range of ener-
scale of the potentiad is different from the transport mean gies. The two point correlator of the DOS,
free pathl, , the criteria for quantum chaosas> I \g, see  R(w)=A%p(e+ w)p(€)). [wherep(e)=Tr 8(e—H), with

Ref.[6].) _ H being the Hamiltonian of the system, aAdis the mean
A powerful method for the calculation of the averagedjeye| spacing and two-particle Green functio® can be
quantities is the supersymmetric nonlinear model pio-  found as certain derivatives of action

neered by Efetoy3] for the disordered systems. Recently,

the supersymmetric action was suggested by Muzykantskii A% %z

and Khmelnitskii[4] and more recently by Andreest al.[5] R(w)=— 1627873 : (6a)
for the system in the ballistic regime. Effective action in Ref. =0

[5] is defined by means of the classical Perron-Frobenius

operator which differs from the first order Liouville operator 2w 8z

by the regularizer of the second order. This approach enables D(w;1,2)= Ty m (6b)
one to perform the systematic semiclassical expansion for 2 2 J1,,=0
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We will be interested in effects associated with the energy . . 1 97
scalew=tz'>A, and will not consider contributions oscil- Lo=P(—-io+Lg)P, Lg=L- Py 9
lating onA. For analysis in this situation it suffices to con-
sider only small fluctuations of) aroundA. We use the n )
standard parametrization OperatorlLy is known as the Perron-Frobenius operator. The

quartic part, responsible for lowest order quantum correc-
1+iP tions, has the form
T= , PA=—-AP, KP'K=P,
V1+P? 2
. R 1/ 0P
— ,Cimz—P3(—|w+LR)P+—(P—) : (10)
P(1)=-P(1), 7 T\ d¢
where the operation of time reversal is defined as We expand the partition function up to the first order in
— L+ and up to the second order in the source Lagrangian
M=KCMTC'K, tS)
for an arbitrary supermatriki. L3=i31k(1=2P?+2P*)+2J,(k+1)A . (P—P®),

Substituting formula Eq(7) into Eq. (5) and keeping
terms up to the fourth order iR we obtainL=Ly+L;,;  where we used Ed7) and omitted traceless terms. For cal-
where the quadratic part of the Lagrangian describing theulating the averages of the arising products of matriees
classical motion is given by we use the Wick theorem with the contraction rules

——— —_— - —
27vP(1)MP(2)=D°(1L,2)A] ST{MA[ 1+ D°(1.2) Ay STIM A 1+ D°(1,2) Ay MA}

+DUL2)A MA], (11)

2mvSTH{MP(1)]STINP(2)]= ST (D*(1,2)M = D°(1,2)M) A NA|f
+(D(1,2)M = D°(1.2)M)Af NAT 1,

where matricesAth(ltA)/Z break the symmetry in the which is the well-known result for the disorder¢#]] and
retarded-advanced subspace, and the classical propaga@haotic systemg5]. The quantum correction has the form
7P is the solution of the equation

AZ
) SR(w)= —3R%47TVJ’ d1 d2 P°(1,2 6D°(2,1)
(—iw*+LR) D12 =275,. (12) 2my
. o B33 . D33

Substituting the result of the averaging in E§b), we —f d3a—(2|w—LR)3(9— .
obtainD(1,2)=D°(1,2)+ 6D(1,2), where the quantum cor- @ @
rection to the classical propagator is given by (14b
27v6D(1 2)=D°(1?)D°(2_2)+D°(1T)DO(1_2) O@ratorI:R in Egs.(13) and(14b) acts on both arguments

3,3 Deriving Eqgs. (14), we used the identity
—ia,D%1,2)=[d3D°(1,3)DP°(3,2).

Equations(13) and (14b) describe the lowest quantum
corrections expressed in terms of the solutions of the Liou-
ville equation(with the regularizer addedor a given sys-
tem, where no ensemble averaging is assumed. They are both
determined by the classical propagators between the points
related by the time inversion. As we already explained, the
equilibration time for such probabilities is the parametrically
large Ehrenfest time.

Let us first discuss the two-point DOS correlair The
classical propagatoP° entering into Eq(149 is the prob-

5 0 ability of the return to the initial state and at energies
RO(w) = 1+ A—ImJ dlaD (1D (149 Much smaller than the Thouless energy it coincides with
2 d ’ D, from Eq.(2). The first term in Eq(14b) corresponds to

+f d3D°(1,3D%(3,2)(2i o—Lg)sD%(3,3).
(13

Notice that Eq.(13) gives a correction only to the nonzero
modes of the Perron-Frobenius operatpdlsD(1,2)=0,
which is a consequence of the charge conservation.

Analogously, we obtain with the help of E¢a) the fol-
lowing expression for the two-point correlator of DOS,
R=R%+ SR. Here
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the weak localization corrections of nonzero modes of thébe assigned some physical value. The value of the regularizer
Perron-Frobenius operator and it can be neglected at suaan be derived for the case if, in addition to the semiclassical
low frequencies. Propagators entering into the second termotential, there are also quantum impurities in the system
are the classical probabilities with the initial and final stateswhich provide the small angle scattering. The diffraction on
related by the time inversion and they coincide with at  the semiclassical potential itself is described by an equation
low frequencies. Substituting Eq®) into Egs.(14), we ob-  more complicated thafl2) and the regulator was not found

tain consistently within ther-model approach. However, it is not
) 3 ) really necessary beca_use the dependence on the regularizer is
R(w)=1— A n A w'm i I'(w) +-., (15 only logarithmical. Using Eq(1) obtained by different argu-
0’ |\ dw ’ ments, we conclude that the physical value of the regularizer
is given by
where the renormalization functidnis defined in Eq(3). It
is easy to see that resylt5) does not contain terms linear in 1 Ne
te . Actually, this can be proven for all orders of perturbation ;:)‘ a’ (16)

theory inA/w by using the approach similar to R¢lL1].
We emphasize that all the deviations from the universality There is a subtlety in Eq13) which deserves more dis-
of the nonoscillating part oR(w) were studied in the diag- cussion because it helps to understand the importance of the
onal approximatiori5,7,8, and, therefore, they are associ- regulator in the supersymmetric Lagrangiés). With the
ated with the time scale of the classical dynamigs Onthe  help of Eq.(12), one can rewrite Eq.13) in the more com-
contrary, Eq.(14b) and the third term in Eq(15) take into  pact form
account the nondiagonal contribution and, thus, contain ad- _ _
ditional quantum smallness. Even though this correction to D°(3,3) 9D%(1,3) dD°(2,3)
the universal Dyson resuliL0] for the orthogonal ensemble 5D(1’2):J d3 TUT ds dps
is small, it oscillates with periodz*, whereA<tzt< 7!
and, therefore, can be distinguished. Naively, 6D—0 for r—o. However, this contribution is
The result for the quantum correction to the conductivityanomalous and caution should be exercised while taking the
of infinite systeméo obtained from Eq(13) limits. Namely, D°(1,¢3+ 64)D°(2,3— 8¢) is a singular
function on 8¢ and this singularity is cut off by the same
)Fz(w) regulator 1. As a result, the derivatives ovei; are propor-
tional to \/7 and the dependence on the regularizer remains
, ) , i i , only logarithmical; see Eq13).
is renormalized in comparison with the quantum disorder | conclusion, we studied logarithmic-in-effects in the
regime[12] by I'. Details of the derivation of this equation gavistical description of quantum chaos. We found analytical
from Eq. (13) can be found in Ref.6]. _ expressions for the deviations from the universality and
The Ehrenfest timeg1) contains the de Broglie wave- ghowed that the characteristic scale for these deviations is the
length \g. T_hls _scale is already abse_nt in the effective  £prenfest timete=\"1{In%|, whereX is the Lyapunov ex-
model(5) which is formulated on the Hilbert space of func- y,nent of the classical motion. Finally, we discussed the role

tions smooth on scalkg, and the lower cutoff of the loga- f anomalies in the supersymmetriomodel[5] of quantum
rithm is related to the regularizerdin the Lagrangiar). It -p50s.

follows from the solution of Eq(12) [6] that D_ has the
form (2) with tz=\"tIn(\7). Therefore, the regulator cannot  Interesting discussions with O. Agam and B.L. Altshuler
be put to zero even in the end of the calculation and it shouldre gratefully acknowledged.
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