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Role of divergence of classical trajectories in quantum chaos
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We study logarithmic-in-\ effects in the statistical description of quantum chaos. We found analytical
expressions for the deviations from the universality in the weak localization correction and in the level
statistics and showed that the characteristic scale for these deviations is the Ehrenfest timetE5l21u ln\u, where
l is the Lyapunov exponent of the classical motion.@S1063-651X~97!51101-9#

PACS number~s!: 73.20.Fz, 03.65.Sq, 05.45.1b
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It is accepted in the literature to call the consideration
quantum phenomena in classically chaotic systems ‘‘qu
tum chaos’’ @1#. For a de Broglie wavelengthlF much
smaller than the characteristic size of the system, quan
phenomena still bear essential features of the classical
otic motion. Examples of such systems studied both theo
cally and experimentally are ballistic cavities or antidot
rays @2#. The quantities usually considered include differe
correlators of quantum spectra of the system~level statistics!
as well as of different response functions, e.g., fluctuation
the conductance~mesoscopics! or the quantum correction to
the averaged transport coefficients~weak localization!.

In principle, all the aforementioned characteristics can
found by solving the one-particle Schro¨dinger equation for
the given system. However, the Schro¨dinger equation for
such systems cannot be solved analytically. Substan
progress can be achieved in the statistical approach to q
tum chaos. In such an approach one gives up attempts to
a contribution of a single quantum state but instead stu
correlators averaged over large number of quantum sta
The averaging for a given system can be performed ei
over wide range of energies or over the applied magn
field.

In the present Rapid Communication we apply the sup
symmetry description@3–5# to investigate how the universa
ity is established in the statistical properties of the system
low frequencies. We will show that the time it takes to e
tablish the universality istE5l21u ln\u, where l is the
Lyapunov exponent of the classical motion. We will expre
deviations from the universality in the level statistics and
the weak localization corrections in terms of the single ren
malization function@6#. Finally, we emphasize the necess
of the finite regulator in the Perron-Frobenius operator
obtaining physical results for the quantum corrections.

Let us first discuss the physical origin of the logarithm
in-\ corrections. In the semiclassical approximation, ea
classical trajectory corresponds to the quantum mechan
amplitude. Quantum phenomena in the system origin
from the interference of the different amplitudes. After t
averaging, most of the interference contributions van
Those that survive are the products that contain the pair

*Present address: NEC Research Institute Inc., Princeton
08540.
551063-651X/97/55~2!/1243~4!/$10.00
f
n-

m
a-
ti-
-
t

of

e

ial
n-
nd
s
s.
er
ic

r-

at
-

s

r-

n

h
al
te

.
of

coherent amplitudes. Such coherent amplitudes are con
uted by the segments of the same classical trajectories
the resulting products are expressed in terms of the proba
ties of finding such segments. The latter probabilities
found by solving the classical equation of motion. Most u
able quantities are the probability where the initiali and final
f states coincidenf5ni ,r f5r i @we will denote this probabil-
ity asD`(t;ni ,r i)# or are related to each other by time in
versionnf52ni ,r f5r i @we will denote this probability as
D2(t;ni ,r i)#. Herer andn are the coordinate of the particl
and the direction of its momentum respectively. The fi
quantity is relevant for the leading approximation for the tw
point correlator of the density of states~DOS! @7,8,5,9#,
whereas the second quantity is important for the weak lo
ization correction to the conductivity@6# and for the higher
order approximations for the correlator of DOS; see belo

In what follows we will consider only ergodic system
This means that after some time the particle visits all
phase space allowed by the energy conservation, i.e.,
classical probabilitiesD6 averaged over the condition
ni ,r i cease to depend on time and take the value of 1S,
whereS is the volume of the system. It is very crucial th
the equilibration time forD2 is parametrically larger than
that for the probabilityD1 .

The characteristic relaxation time for the probabilityD1

is of the order of the flying time of a particle across t
systemt f l.L/vF for the ballistic regime or the Thoules
time tT.L2/D for the diffusive regime (L is size of the
system,D is the diffusion coefficient, andvF is the Fermi
velocity!.

On the other hand, in the strictly classical limit probabili
to havenf52ni ,r f5r i vanishes no matter how large trav
eling time t is. This is due to the fact that the final state c
be reached by moving along a classical trajectory which
incides with the initial one. This means that a particle m
be reflected exactly backwards from an obstacle. For the c
otic system, the measure for such a process is zero and th
whyD2(t;ni ,r i)50. The only reason for this probability no
to vanish is that the initial and final conditions cannot
specified with accuracy better than is allowed by the unc
tainty principle. Due to this principle, the differenc
unf3ni u5df0 cannot be smaller than the diffraction sprea
ing df0*AlF /a, with a@lF being the characteristic spatia
scale of the static potential the particle moves in. In orde
J
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find the probability for such close~but not coinciding!
r f ,r i , one has to take into account the fact that the moti
of the particle at the initial and final stages are correlat
This is because the trajectory along which the particle mo
on the final stage,@r (t2t1),2n(t2t1)#, almost coincides
with the trajectory the particle moved along at the init
stage,@r (t1),n(t1)#. This problem is equivalent to the con
sideration of the divergence of two classical trajector
~‘‘1’’ and ‘‘2’’ ! which start from the same pointr i with a
small difference in the directions of their momen
un2(0)3n1(0)u5df0 ~it can be seen by the time inversio
on the final segment!. In the chaotic system the differenc
df12(t)5un2(t)3n1(t)u grows exponentially with time
df(t).df0e

lt wherel is the Lyapunov exponent of th
classical chaotic motion. Therefore, we have also for
given trajectorydf(t1)5un(t2t1)3n(t1)u.df0e

lt1. In or-
der to close the trajectory at some timet1*,t/2, angle
df(t1* ) should become of the order of unity and th
t*(2/l)ln(1/df0). Taking into accountdf0*AlF /a we
conclude that the time it takes to establish the equilibri
value of functionD2 is the Ehrenfest time

tE5
1

l
lnS alF

D , ~1!

andD2 vanishes at smaller time,D2.u(t2tE).
The above discussion leads us to the following expr

sions for the Fourier transform of the classical probabilit
D6 for the frequenciesv smaller than inverse time of th
travel of the particle across the system:

D1~v!5
1

S

1

2 iv1 , D2~v!5
1

S

G~v!

2 iv1 , ~2!

wherev15v1 i0. The denominators in Eqs.~2! reflect the
ergodicity of the system at large time and the renormali
tion functionG(v) describes the delay ofD2(t) with respect
to D`(t) by the Ehrenfest timetE

G~v!5expS ivtE2
v2l2tE

l2 D . ~3!

The second factor in Eq.~3! characterizes the fluctuations o
the Lyapunov exponent and the parameterl2 is of the order
of l. More details about the derivation of functionG can be
found in Ref.@6#. Appearance of the new time scaletE is the
qualitative difference between quantum chaosa@lF and
quantum disordera&lF regimes.~In the systems where th
scale of the potentiala is different from the transport mea
free pathl tr , the criteria for quantum chaos isa@Al trlF, see
Ref. @6#.!

A powerful method for the calculation of the averag
quantities is the supersymmetric nonlinears model pio-
neered by Efetov@3# for the disordered systems. Recent
the supersymmetric action was suggested by Muzykan
and Khmelnitskii@4# and more recently by Andreevet al. @5#
for the system in the ballistic regime. Effective action in R
@5# is defined by means of the classical Perron-Froben
operator which differs from the first order Liouville operat
by the regularizer of the second order. This approach ena
one to perform the systematic semiclassical expansion
s
.
s

l
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e

-
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.
s
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or

the averaged quantities and to understand how the und
ing classical dynamics shows up in various quantum corr
tions.

Partition functionZ in the supersymmetry approach
given by the functional integral@5#

Z$J%5E DQ~1!expF2
pn

2 E d1 STr~L1LJ!G , ~4!

with LagrangiansL,LJ being defined as

L5
iv1

2
LQ1T21LL̂T1

1

4t S ]Q

]f1
D 2, Q5T21LT

LJ5 iQ~1!FJ1kL1~J2~1!L11J2~1̄!L2!
k11

2 G ~5!

wheren is the density of states per unit area. We used
shorthand notation 15(n1 ,r1),1̄5(2n1 ,r1),d15dn1dr1/
2p, coordinate r and the direction of the momentum
n5(cosf,sinf) characterize the position of the particle o
the energy shell~we will restrict ourselves to two dimen
sional systems!. Liouvillean operatorL̂ describes the classi
cal evolution on the energy shell and defined by the Pois
bracket L̂•5$•,H%, whereH is the Hamiltonian function.
The last term in the LagrangianL is the regularizer, the
physical significance of which will be discussed later. T
operation of supertrace is defined in Ref.@3#. We will con-
sider only systems with the unbroken time reversal symm
try ~orthogonal ensemble!.

In Eq. ~5!, T̂ is an 838 supermatrix defined in a linea
superspacep^g^d which we represent as the direct produ
of three linear spaces;p and d are the spaces of retarded
advanced and time reversal~complex conjugate! 232 matri-
ces respectively, andg is the superspace of fermion-boso
232 supermatrices. All the relevant matrices can be con
niently expressed in terms of the Pauli matric
tz

a ,t6
a 5(tx

a6 i ty
a)/2, acting in spacesa5p,g,d. Matrices

L5tz
p

^1g^1d, L65t6
p

^1g^1d, and k51p^ tz
g

^1d

break the symmetry in advanced-retarded and in fermi
boson spaces respectively. MatrixT is the subject to con-
straints T†KT5K and T†(1)5CTT(1̄)CT, where
2K5@(11tz

p)^1g1(12tz
p)^ tz

g# ^1d and the matrix of
charge conjugate C is given by C51p

^ (1g^ t2
d 2tz

g
^ t1

d ).
Partition function~4! allows one to find different quantum

mechanical correlators averaged over a wide range of e
gies. The two point correlator of the DOS
R(v)5D2^r(e1v)r(e)&e @wherer(e)5Tr d(e2Ĥ), with
Ĥ being the Hamiltonian of the system, andD is the mean
level spacing# and two-particle Green functionD can be
found as certain derivatives of action

R~v!52
D2

16p2Re
]2Z

]2J1
U
J1,250

, ~6a!

D~v;1,2!52
2p

n

d2Z

dJ2~1!dJ2~ 2̄!
U
J1,250

. ~6b!
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We will be interested in effects associated with the ene
scalev.tE

21@D, and will not consider contributions osci
lating onD. For analysis in this situation it suffices to co
sider only small fluctuations ofQ aroundL. We use the
standard parametrization

T5
11 iP

A11P2
, PL52LP, KP†K5P,

P~1!52 P̄~ 1̄!, ~7!

where the operation of time reversal is defined as

M̄5KCMTCTK, ~8!

for an arbitrary supermatrixM .
Substituting formula Eq.~7! into Eq. ~5! and keeping

terms up to the fourth order inP we obtainL5L01Lint
where the quadratic part of the Lagrangian describing
classical motion is given by
ga

-

o

S,
y

e

L05P~2 iv1L̂R!P, L̂R5L̂2
1

t

]2

]f2 . ~9!

OperatorL̂R is known as the Perron-Frobenius operator. T
quartic part, responsible for lowest order quantum corr
tions, has the form

Lint52P3~2 iv1L̂R!P1
1

t S P ]P

]f D 2. ~10!

We expand the partition function up to the first order
Lint and up to the second order in the source Lagrangian

LJ5 iJ1k~122P212P4!12J2~k11!L1~P2P3!,

where we used Eq.~7! and omitted traceless terms. For ca
culating the averages of the arising products of matriceP
we use the Wick theorem with the contraction rules
~11!
s

ou-

both
ints
the
lly

ith
where matricesL i
65(16L)/2 break the symmetry in the

retarded-advanced subspace, and the classical propa
D0 is the solution of the equation

~2 iv11L̂R!1D0~1,2!52pd12. ~12!

Substituting the result of the averaging in Eq.~6b!, we
obtainD(1,2)5D0(1,2)1dD(1,2), where the quantum cor
rection to the classical propagator is given by

2pndD~1,2!5D0~1,2̄!D0~ 2̄,2!1D0~1,1̄!D0~ 1̄,2!

1E d3D0~1,3!D0~ 3̄,2!~2iv2L̂R!3D0~3,3̄!.

~13!

Notice that Eq.~13! gives a correction only to the nonzer
modes of the Perron-Frobenius operator,*d1dD(1,2)50,
which is a consequence of the charge conservation.

Analogously, we obtain with the help of Eq.~6a! the fol-
lowing expression for the two-point correlator of DO
R5R01dR. Here

R0~v!511
D2

p2ImE d1
]D0~1,1!

]v
, ~14a!
tor
which is the well-known result for the disordered@8# and
chaotic systems@5#. The quantum correction has the form

dR~v!5
D2

2p3n
ReF4pnE d1 d2 D0~1,2!dD0~2,1!

2E d3
]D0~ 3̄,3!

]v
~2iv2L̂R!3

]D0~3,3̄!

]v G .
~14b!

OperatorL̂R in Eqs. ~13! and ~14b! acts on both argument
3,3̄. Deriving Eqs. ~14!, we used the identity
2 i ]vD0(1,2)5*d3D0(1,3)D0(3,2).

Equations~13! and ~14b! describe the lowest quantum
corrections expressed in terms of the solutions of the Li
ville equation~with the regularizer added! for a given sys-
tem, where no ensemble averaging is assumed. They are
determined by the classical propagators between the po
related by the time inversion. As we already explained,
equilibration time for such probabilities is the parametrica
large Ehrenfest time.

Let us first discuss the two-point DOS correlatorR. The
classical propagatorD0 entering into Eq.~14a! is the prob-
ability of the return to the initial state and at energiesv
much smaller than the Thouless energy it coincides w
D1 from Eq. ~2!. The first term in Eq.~14b! corresponds to
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the weak localization corrections of nonzero modes of
Perron-Frobenius operator and it can be neglected at
low frequencies. Propagators entering into the second t
are the classical probabilities with the initial and final sta
related by the time inversion and they coincide withD2 at
low frequencies. Substituting Eqs.~2! into Eqs.~14!, we ob-
tain

R~v!512
D2

p2v2 1
D3v

p3 ImS ]

]v

G~v!

v D 21••• , ~15!

where the renormalization functionG is defined in Eq.~3!. It
is easy to see that result~15! does not contain terms linear i
tE . Actually, this can be proven for all orders of perturbati
theory inD/v by using the approach similar to Ref.@11#.

We emphasize that all the deviations from the universa
of the nonoscillating part ofR(v) were studied in the diag
onal approximation@5,7,8#, and, therefore, they are assoc
ated with the time scale of the classical dynamicst f l . On the
contrary, Eq.~14b! and the third term in Eq.~15! take into
account the nondiagonal contribution and, thus, contain
ditional quantum smallness. Even though this correction
the universal Dyson result@10# for the orthogonal ensembl
is small, it oscillates with periodtE

21 , whereD!tE
21!t f l

21

and, therefore, can be distinguished.
The result for the quantum correction to the conductiv

of infinite systemds obtained from Eq.~13!

ds~v!52
e2

2p2\
lnS 1

vt tr
DG2~v!

is renormalized in comparison with the quantum disor
regime@12# by G. Details of the derivation of this equatio
from Eq. ~13! can be found in Ref.@6#.

The Ehrenfest time~1! contains the de Broglie wave
length lF . This scale is already absent in the effectives
model~5! which is formulated on the Hilbert space of fun
tions smooth on scalelF , and the lower cutoff of the loga
rithm is related to the regularizer 1/t in the Lagrangian~5!. It
follows from the solution of Eq.~12! @6# that D2 has the
form ~2! with tE5l21ln(lt). Therefore, the regulator canno
be put to zero even in the end of the calculation and it sho
8

.

e
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s

y

d-
o

r

ld

be assigned some physical value. The value of the regula
can be derived for the case if, in addition to the semiclass
potential, there are also quantum impurities in the syst
which provide the small angle scattering. The diffraction
the semiclassical potential itself is described by an equa
more complicated than~12! and the regulator was not foun
consistently within thes-model approach. However, it is no
really necessary because the dependence on the regulari
only logarithmical. Using Eq.~1! obtained by different argu-
ments, we conclude that the physical value of the regular
is given by

1

t
5l

lF

a
. ~16!

There is a subtlety in Eq.~13! which deserves more dis
cussion because it helps to understand the importance o
regulator in the supersymmetric Lagrangian~5!. With the
help of Eq.~12!, one can rewrite Eq.~13! in the more com-
pact form

dD~1,2!5E d3
D0~3,3̄!

pnt

]D0~1,3!

]f3

]D0~ 2̄,3!

]f3
.

Naively, dD→0 for t→`. However, this contribution is
anomalous and caution should be exercised while taking
limits. Namely,D0(1,f31df)D0(2,f32df) is a singular
function ondf and this singularity is cut off by the sam
regulator 1/t. As a result, the derivatives overfs are propor-
tional toAt and the dependence on the regularizer rema
only logarithmical; see Eq.~13!.

In conclusion, we studied logarithmic-in-\ effects in the
statistical description of quantum chaos. We found analyt
expressions for the deviations from the universality a
showed that the characteristic scale for these deviations is
Ehrenfest timetE5l21u ln\u, wherel is the Lyapunov ex-
ponent of the classical motion. Finally, we discussed the r
of anomalies in the supersymmetrics model@5# of quantum
chaos.
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